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This paper addresses the problem of computing the current induced in a
thin wire located inside a cylindrical cavity with a circumferential slot
when the cavity is illuminated by an incident plane wave. The calculation is
carried out in two steps. First, the problem of penetration of the incident
field into the cavity is solved by the method of moments under the assumption
that the presence of the wire inside the cavity creates little or no perturba-
tion of the interior field. Next , the induced current on the wire is calcu-
lated by the following two methods:~~,~~) use of a simple analytical formula
derived5~~om the application of the ~liener—Hopf techniques to the finite wire
problem; A~Mt~ umerical solution of an integral equation. Extensive numerical
results for the induced current are presented. It is found that the current
is sensitive to the cylinder radius, the cavity height, the frequency of excita-
tion, and the wire location, but is relatively less sensitive to the variation
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in the slot length. In addition, the induced current on a wire insi de
the cavity can be much larger than its counterp ar t in free spac. illumina ted
by the same incident plan. wave at frequencie s where the cavity is near
resonance.
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ABSTRACT

This paper addresses the problem of computing the current induced

in a thin wire located inside a cylindrical cavity with a circumferential

slot when the cavity is illuminated by an incident plane wave. The calcu—

lation is carried out in two steps. First, the problem of penetration

of the incident field into the cavity is solved by th. method of moments

under the assumption that the presence of the wire inside the cavity creates

little or no perturbation of the interior field. Next, the induced current

on the wire is calculated by the following two methods: (i) use of a simple

analytical formula derived from the application of the Wiener—Ropf techniques

to the finite wire problem; (ii) numerical solution of an integral, equation.

Extensive numerical results for the induced current are presented. It is

found that the current is sensitive to the cylinder radius, the cavity

• height, the frequency of excitation, and the wire location, but is relatively

less sensitive to the variation in the slot length. In addition, the induced

current on a wire inside the cavity can be much larger than its counterpart

in free space illuminated by the same incident plane wave at frequencies

where the cavity is near resonance. 
-

iii

L -



- - -r~~~ ~~~~~~~~~~ 

-

~~ - - -c~.——’—— ~ 
-

I:.
I~

TABLE OF CONTENTS

• Page

I. INIRODUCTION 1

• II. FIELD IN THE CAVITY 7

III . CURRENT INDUCED ON A WIRE IN THE CAVITY 15

IV. NUMERICAL CCMPUTATIONS 21

V. NU1~~RICAL RESULTS 27

REFERENCES 41

•

•

•



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — __-__—_.- — ~~~~~~~~~~~~~~~~~ -‘ —‘—~ —‘- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —$ - -~ 
— P

LIST OF FIGURES

Figure Page

1. An infinitely long cylinder with a cavity and a
longitudinal slot , illuminated by an incident plane wave .   2

2. An infinitely long cylinder with a cavity and a wire
- inside, illuminated by an incident plane wave through

a circumferential slot on the cavity wall 4

3. A finite length cylinder illuminated by an incident plane
wave at an oblique angle 19

4. E~ in the aperture as a function of $ with N as a parameter  28

5. E inside the cavity as a function of $ with (p/a) as a
pirameter 29

6. E inside the cavity as a function of a with ( p / a )  as a

~iI 
pirameter 30

r 7. E inside the cavity as a function of p with (a/h) as a
pirameter 31

8. Comparison of the simple formula and the moment method for the
determination of the current induced at the center of a
cylinder in free space as a function of the angle of
incidence e (real and imaginary ) 33

9. Comparison of the simple formula and the moment method for
the determination of the induced current distribution on a
wire inside the cavity 34

10. Induced current on a wire inside the cavity as a function of
z with N as a parameter 35

11. Induced current at the center of the wire inside the cavity as
a function of slot length 2c. 37

12. Induced current at the center of the wire inside the cavity
as a function of cylinder radius a 38

13. Induced current at the center of the wire inside the cavity
as a function of cavity length 2lt 39

14. Current distribution induced on a wire inside the cavity with
frequency as a parameter 40

: 

vii ____



~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~ ~~~~~“ “~r 
~~~~~~~~~~~~~ ‘ ‘~~‘ — __ ,—... _—.,.F•,,

• El
- 
. -~~ - - I. INTRODUCTION i -

• The penetration of an electromagnetic wave through an aperture into

a cylindrical structure is of current interest because of its application

to Eli?, to ~ 1C, and to biological studies. As early as 1949, Soimnerfeld

(11 studied the problem of an infinitely long circular cylinder with a

longitudinal slot , illuminated by a normally incident plane wave. Using a

Fourier analysis approach , So~~~rfeld reduced the problem to a system o

infinitely many linear equations , but declared resignedly , “We can do

practically nothing with the problem.” Silver and Saunders (2] used the

saddle—point integration metho d for the inversion of Fourier transforms

and extracted the far field of Someerfeld’s problem . Hitherto , a number

of extensions along this line of work~ have been reported (3], [4]. With

the advent of high—speed digital computers , Sonmaerfeld’s penetration

problem can now be solved by numerical means (5], [6]. The penetration of

• an EN wave into the cylinder’ through a rectangular aperture was first

carried out by Safavi—Naini, Lee and Mittra (7], (8]. Their problem has

a more complex geometry than Someerfeld ’s in that two conducting plates

are introduced inside the cylinder at z — ±h to form a cavity, as illus-

trated in Figure 1.

In the present report, and extension of the penetration problem of

Safavi—Naini et al. is investigated ; in which a thin wire is added inside

the cavity and the problem is to determine the current induced on the wire .

The wire is oriented parallel to the longitudinal direction of the

cylindrical cavity . If the slot in the cavity wall is also longitudinal,

• there is little induced current on the wire . Hence , we concentrate on

1
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Figure 1. An inf initely long cylinder with a cavity and a
• longitudinal slot , illuminated by an incident p lane wave .
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the more interesting case , namely , the slot which is circumferential on the

cylindrical cavit y vall . The eosç site geometry of the present probl em

is skstchsd in Figure 2.

Due to the thinness of the wire , it appears reasonable to assume that

the presence of the wire doss not perturb the field generated inside the

cavity. Thus , the problem under consideration can be solved in two steps :

• (A) Deter mine the field 1 m aid, the cavity as if the wire were

absent.

(B) Using I as an incident field, determine the induced current

1( z) as if the wire were situated in the free space.

• We emphasize that the above two—step approach is an approximation . The

exact degree of approximation will be studied in a separate report.

The plan for the present report is as follows: In Section II, the

problem of Part (A) with the wire absent is formulated and a system of

infinitely many linear equations derived. The procedures are briefly

described below:

1. The unknown electric field across the aperture is represented

by a Fourier series.

2. Applyin g the equivalence principle, the aperture is shorted by

a perfect conductor. The effect of the original aperture field •

is accounted for by introducing equivalent magnetic currents on

both sides of the shorted aperture.

3. Inside the cavity, the magnetic field produced by the equivalent

magnetic current is determine d via a magnetic vector potential.

Th. resultant field is given in the form of a doubly infinite

series of eigenfunctiona of the cavity.

3
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Figure 2. An infinitely Long cylinder with a cavity and a wire •

inside, illuminated b’i an incident plane wave through a
circumferential slot on the cavit y wall .
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4. Exterior to the cavity, the magnetic field is also generated

via a magnetic vector potential, which is partitioned into three

components to represent the incident field, the reflected field,

and that produced by the equivalent magnetic current .

5. Th. coupled equation from which the unknown aperture electric

field can be determined is developed by en forcing the continuity

of the tangential magnetic field across the aperture .

6. The coupled equation is solved numerically by the method of

moments [9] .

In Section II I , the current induced on the wire inside the cavity

when it is i].luminated by the field I computed in Part (A) is derived.

Since I is given in terms of a doubly infinite series of eigenfunctions

of the cavity , it can be interpreted as a spectrum of plane waves . As a

result , the induced current 1(z) can be determined by superimposing the

currents due to each component of the plane wave spectrum. The current
• 

. induced by each component of the spectrum is determined by one of the

following two methods:

1. The standard numerical (moment) method based on an integral

equation formulation (10], and

2. the simple approximation formula recently developed by Chang,

Lee , and &ispin (11), (121.

It should be noted that both of the above methods apply only if the incident 
•

plane wave is homogeneous. In the present problem, however, the field E

inside the cavity consists of both homogeneous and inhomogeneous plane

wave components. Hence, the above two methods have to be extended by

analytical continuation to cover the case of an incident inhomogeneous

plane wave.
5
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In Section IV, possible difficulties of numerical computations of

the equations derived in Sections II and III are considered. Techniques

for improving the convergence rate of the sumeation procedures are

presented in Section IV. Extensive numerical results are presented in

Section V.

I
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II. FIELD IN THE CAVITY

In this section , the field I excited in the cavity with the wire absent

is derived. The geometry of the problem under considerat ion in this section

is illustrated in Figure 2 with the wire removed. The conductin g circular

cylinder is infinitely long and is of radius a. A cylindrical cavity is

formed inside the cylinder by two conducting plates located at z — ±h.

The cavity is coupled to exterior excitations through a circumfe rential

slot on its cylindrical wall . The rectangular slot is of dimension

2c x 2d and centered at (x — a, y • 0, z — 0). The width of the slot is

assumed to be small in terms of wavelength , i. e . ,

2kd << l (2— 1)

The structure is illuminated by a normally incident plane wave of unit

magnitude described by

• —i - ikxE •ze

—i ~~l i~~ 
(2—2)

• H . y j ~ e

where the time harmonic factor exp (+jwt) has been suppressed and

n • • 120 1? is the intrinsic impedance of the free space .

The symeetry of the configuration, together with the plane wave

excitation given in Eq. 2—2 , dictate that ths tangential electric field

across the aperture be an even function of $. Furthermore, the narrowness

of the slot enables us to assume that the aperture field is approximateLy

• constant in z and is s—directed. Thus, the tangential electric field a.rosa

the aperture Ea — a can be represented by a Fourier—cosine series :

E — 

~ 
E~cos r •~ < •~

, j z ~ < d . (2— 3)
u—0

7
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In accordance with the boundary condition that E vanishes at ~ • ±$O
(
~O 

— c/a ) ,

(I ’~ } are found to be

2 + 1 wr — 2A U • 0,1,2, . . .  . (2—4)U

Due to the assumed direction of the aperture electric vector (or the

equivalent magnetic current), it can be shown that a field TM with respect

to a is sufficient torepresen t the total field inside the cavity . Such

a field can be generated via a a—directed magnetic vector potential

• A1i. The relations between A1 and the field 
components are

• 
~~~~~~ 

I H
,

u s_ h
~~
.!. L

+ kiAt H - 0 . (2-3)

Inside the cavity , A~ is a linear combination of all possible elementary

wave functions chat are solutions to the scalar Helaholta equation [131.

It assumes the form

• 
~~~ 

A_IJm(’~n
P)cOS m~* Co. 

(2—6 )
m,n 0

where

k2 > c~

— k2 k2 < cvt~ 
(2—7)

and

• ¶ , ~ — o ,x ,~,... (2—8)

a



U
The constants (Ams} are unknowns, and Ci) are the mth order Bessel

functions of the first kind. Note that with the choices of the

eigenvalues {%} in Eq. 2—8, the boundary conditions that E~ and
be zero at a — th are automatically satisfied .

The constants (A ma) in Eq. 2—6 are unknown quantities , and by

enforcing the conditions that E5 be zero on the cylindrical wall and

equal to 
~a 

on the aperture , they can be evaluated in terms of

the expansion coefficients of 
~a 

given in Eq. 2—3. First , we evaluate

E5 (referring to Eq. 2—5 ) at o • a to obtain

~~~~ ui~Jo 
v~A J ( y  a)cos m$ cos 

~n
5

• ~2(~,z) ~ 
E cos r~. 

; 
~~~ 

it , ~~ < h (2—9)

where Q is the characteristic function of the aperture :

• (1 ; 
‘ IZ~ < d  ~

a (
t~~
0 ; otherwise. (2.10)

• We recognize that Eq. 2-9 is a standard Fourier—Bessel. series with

• unresolved coefficients (Ama)~ Hence , (A ma) are determined by standard

procedures with the results

• j4wuc cos $ sin c~ d °‘ (_ l) Ur
• A • Z E (2-11)u 

- a

m,n • 0 ,1,2 , ...
in which em is the Neumann number, defined by

e (2 .m .0

in

9
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In the region exterior to the cylindrical structur e , the symsetry

of the configuration again leads to a TM field with respect to a. Thus ,

the exterior field is also determined via a a—directed magnetic vector

potential — f~i. For reasons which will be obvious later , ‘V is
• partitioned into three wave funcitons : ‘V ‘V

i + ‘V~ + ‘V
i. The first of

these ‘V~ represents the incident plane wave ; it is independent of a and

is given by

• 
‘V
i 

• ~ ~~
— .1 (kp)cos $ . (2—12)

m.O m m

The field components of ‘V
i are given in Eq. 2— 2 . The secon d wave function

represents the reflected wave when the aperture is closed by a perfect

conductor; it assumes the form:

— ~ f ~ (2—13)
m”O m L H ~ 

(ka)) ~

where {a~
2
~) are the ~

th order Hankel functions of the second kind . The

third wave function ‘V5 corresponds to the field produced by the equivalent

magnetic current. In contrast to both ‘V~ and ~V
r ? depends on a and is

represented by a continuous spectrum of cylindrical waves:

‘P’ • cos $ f~ ~~~~~~~~~~~~~~~ 
dci , (2—14)

where (Fm) are unknown functions , and

I I~2~~2 k2 > cX 2
— (2— 15)

1~
_j/02 — k 2 , k2 < c 12

To de~era ine ( F ) , we first evaluate E+ at 0 • a to obtain

10
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cos $ I v
2Fm(ci)H~

2
~
(Ya)e

~~~
b

— a(s,z) ~ E cos r $ , ~•I it I z l  < . 
• 

(2—16)
u—O U u

• Then, we multiply both sides of the equation above by cos n$, u • 0,1,2,...,

and after that, integrate the equation over the entire domain of interest.

4 •~ By invoking the orthogonal properties of (cos n$}, 
~~~ 

are determined

in terms of (E
U
):

j 2wue cos m$~ sin cid (—1) r
F (

~~
) — 

2 2 (2) ~ 
E 2 2 (2—17)

in c~w ~y R~ (ya) U 0 
~ 

- 15

m • 0 ,1,2 

With {Amu} and {F15
} defined by Eqs. 2—li and 2—17, the requirement

that the tangential electric field be continuous across the aperture is

automatically satisfied. However , these definitions, of themselves, do not

ensure the continuity of the tangential magnetic field across the aperture.
5 

To enforce the continuity of the magnetic field, we proceed as follows: In

the region exterior to the cylinder, the three partial magnetic fields

H~, H~, and H (R is ixmsaterial) corresponding respectively to the three

4 wave functions defined in Eqs. 2—12 through 2—14 are

• —~~~~~ ~~ ~~
— J ’(kp)cos $

m~0 in

- 
~~~~~ ~ [

~ 
H (2)

(ka)] 
H~2)I(kp ) cos $

H3 - cos m$ ~F (a) H (2)I(yp)e iOZ dci . (2-18)
• p m_O m in

11
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Ins ide the cavity B
~ 

is given by

a — ~~~ ;A J’(y p)coe $ cos ~ a . (2—19)
m a O

Hence, the desired continuity of the tangential magnetic field across

the aperture now reads

iw”O ~m [a 
- 

HT2) (ka) 
~~2) 

(ka] cos $

— cos m$ 
~~ 

yF
15
(ci)R~

2
~ 

I (.~a)eJci 1 dci

— — 

~ m~:~o ~~~~~~~~~~ m$ cos ci a  ; (2—20)

~ .~~o’ ~~ < d

The above equation can be simplified by recognizing that the term in the

bracket on the LHS is the Wronskian of Bessel functions:

S (ka)
J ’(k a) — 

(2) H~
2
~ ’(ka) —

U
15 

(ka) ~ 1rkaH
~ 

(ka)

By substituting the above result into Eq. 2—20 it becomes

cos f’ yF
~
(ci)H

~
2
~
’ (ya)e~~~ dci

— cos $ YnAmaJ~~~n~~~05 cm
l

4 ; I$I I • o~ lz I  < d . (2—21)

~~0 e15
H 
~ 
(ka)

12
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Applying the method of Galerkin [9h the preceding equation can be solved

numerically. First , we integrate the equation with respect to a over the

aperture; the result La

cos $ 1 2 ~~ ~~ yF (ci)B~
2
~’(ya) dci

Z sincd
- Z cos $ fl YnAmaS i(Yn&)m,n 0 n

— 4 icos ~~ 2d 
~~~~ 

~~ 
. (2 22)

m O c H  (ka)
1 5 1 5

Next we multiply both sides of the equation above by cos \I$, V — 0 ,1,2 ,...

and the integration of the resultant equation over the entire domain of

interest leads to

• 10 ~Itv J~ 
sin cid yF (ci)H~

2
~(ya) dci

sin ci d
• — 

~~ g~ , —. ~~

a,n 0  n

~~ ~~

— “s’ v — 0,1,2 ,. . . ,  (2—23 )
m.0 m U  (ka)a . .• . •

where stands for

,in(in - v)$ sin(m + v)$
• + . (2—24 )r n - v  1fl + V

Then , we replace (A ma} and (F15
} in Eq. 2—23 by their definitions in Eqs.

2—li and 2—17 . After some algebraic manipulations , we arrive at

~U 
[tt~~
)+ ~~~ — v — 0,1,2,... (2—25)

13
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where

(—l)~’r1~ g~ ,co. ~ o sin2 ci~d I~
2
~ ’(Ya) dci 

•

•~IV m—0 e
~
(r
~ 

— ~2) J 2~ H~
2
~ (ya)

A~
2
~ — 

(_l)ur~ ~ g~~cos 
~o ~ sin2 c~d i~~n~

and 

- d 
: ::

~~:~~~~~~ 

- ~2) n—O ci

k a m 0  c
15
H
~ 

(ka)

Equation 2—25 is the system of infinitely many linear equations that

we intended to derive. In general, this system of equations cannot be

solved. However , if the series in Eq. 2-3 is truncated at a finite number

• N , the system would become a system of N x N algebraic equations , with

which the unknowns (E
U
}
~ 

U • 0 ,l ,2 , . . .N , can be determined by solving the

equations simultaneously by standard procedures such as the method of

Gaussian eliminatiot’. After are determined , it is a matter of direct

substitution of 
~~~ 

into Eq. 2—5 to obtain the field inside the cavity .

For example, the a—component of the electric field U1 is given by

U1 - ~~ ~

~ sin ci d ~os ci a ‘ cos m$ cos S (y p)
X 

2 2 
in 1% (2—26 )

n 0 n n m’.O c
~
(r
~ 

— m )

p < a , $ I < i t , z t < h  .

This complete. our derivation for the field inside the cavity due to the

incidence of Eq. 2—2 in the absence of the wire .

14
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III. CURRENT INDUCED ON A WIRE IN THE CAVITY

In this section , the current induced on the wire inside the cavity

when it is illuminated by the field I is derived . We attack the problem

• by assuming that the presence of the wire does not perturb the field

generated inside the cavity. It enab les us to use I as an incident field

t and to determine the induced current 1(z) as if the wire were situated

in the free space.

With reference to Eq. 2—26 , we note that the electric field tangen-

tial to the wire U1 is given in terms of a doubly infinite series of

eigenfunctions of the cavity. The series can be interpreted as a spectrum

of plane waves . Explicitly , E
~ 
is rewritten as

— Z 
~~~~~ 

exp(+jk cos enz) ; (3—1)

• p I a, I$~ <I F , Iz i Ih
where

en — cos~~(~~) , (3—2)

and
(_l)Ur sin ci d cos $ cos $ S (y p)n ~ 

O~~~~ fl
n irh ’~~~u 

£ 2 2n m 0  £15
(r
U 

— 
~~ ~

We interpret each component of the field in Eq. 3—1 as a plane wave in

free space propagating in the direction e~ with respect Co the a—axis.
In this report , two methods are used to compute the current induced

• on the wire due to each component of the plane wave spectrum described

in Eq. 3—1. The first of these methods is based on an integral equation

formulat ion:
15
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The above thin wire scattering problem has been thoroughly studied in

recent years, and a number of efficien t programs to compute the unknown

• current I~” have been developed. The program developed by Butler [101,

which i based on solving Eq. 3—4 by the method of moments, is adopted

here. Applying the principle of superposition , the induced current I

is given by

4 1(z) — Z fn~~~~~~
’
~~

1) , (3—5)

where p is evaluated at the location of the wire.

As is veil—known, using moment methods to compute the current on a

wire is extremely time—consuming when the wire is of the order of several

wavelengths. An alternative method that is suitable for long wires is

to use the simple approximation formula developed recently by Chang, Lee

and Rispin (Il], [12]. The techniques used to derive this simple formula

are briefly described below :

1. Using a Wiener—Hopf method, the reflection coefficient from the

end of a semi—infinite wire illuminated by a plane wave of unit

amplitude is determined.

2. By considering th. multiple bounces of the current waves , the

current induced on a wire of finite length can be expressed in

• terms of two Neumann series involving the just mentioned reflect ion

coefficient . The series are then suamed up into a closed form

to give the desired approximation formula .

16
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The induced current due to each component of the plane—wave spectr um is

denoted by i~
2) and is given by

2 r R(n ,h t ’)

~ ~(~) — L cOr—e~ R(1T,2h
~
) + ~

Ot_8
n~

hw
_ 1 ’) V (enshw~~

u (h
~
—z’)

(-. R(,r,h +z ’) 1
+ L Cie~) R(1T,2h

~
) + ~ ($~ h~

+z’) V (IF_en ,hJU ~~~~
+ v(e ,z’) , (3—6)

where a’ — a — a
~
, In the above formula, V represents the current induced

on an infinitely long cylinder by a unit p lane wave :

4ir exp(-jkcoq e a ’)
v(e,z) — — sin e0 W(kcoa 8~) ‘

in which W stands for

W _JITJO &wSifl 8 ) H ~
2
~ (ka sin $ )  , (3—8)

where and ~(2) are , respectively , the zerath—order Bessel function of

the first kind and the Hankel function of the second kind , and a~ is the

radius of the cylinder. Another universal function U is found in the

simple formula; it represents the current on an infinitely long center— : 1 .
fed antenna generated by a unit voltage impulse. For a thin—wire antenna

and for a sufficiently large kz, U can be accurately approximated by

U( ) ~ Zit exp~-j k [z ’I) (3 9)I r~ tn(2kfz ’~ ) — j r r/ 2  — 2en(ka
~
) — y ‘

where y — 0.57712... is thk Euler’s constant. The reflection coefficient

R in Eq. 3—6 is defined by

R(8,z) - - 

~ [Ln(kaw
sin 1~ 

+ ~ + + e Ei(ivo)] 
, (3-10)

17
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where

V9 .k z ’(l cos 9 )

and U1 is the *xpon.ntial integral . Finally , A and C are, respectively,

:, shorthand notations for

A — R.(e ,2h
~
) — R(e~,h~1&) , (3—Il)

and

— 
R( r_9n,2hv) V (9 ,h )ft(’~,2h) U (21i) — R(9 ,2h) V (1T_e

~
,h)
~

1 (R(it ,2b ) U ( Z h
V V (3— 12 )

Again, the total induced current is obtained by superimposing all

As is illust rated in Figure 3, the electric field of the inc ident plane

A wave is in the 9—direction and has an amp litude f e/Sin e~ . Therefore ,

I is related to t~
2) by

t (2) (a)
1(z) — ~ 

~~~~~ in e ‘ 
(3—13)

ci

where 0 is evaluated at the location of the wire.

A careful. scrutiny of the techniques in deriving both ~~~ and

reveals that the two methods apply only if the incident plane wave is

• homogeneous, i.e., cos2 9
~ 

< 1 or real incident angle 9~ . Zn the present

problem, however, the field ! inside the cavity consiits of both homo-

geneous and inhomogenaous components. Hence , both methods have to be

extended by analytical continuation to cover the case of an incident

inhomogeneous plane wave.

Let us firs t consider which is obtained by solving Eq . 3—4.

~ote that Eq. 3—4 is developed by equating the axial component of the

18
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Figure 3. A finite length cylinder illuminated by an incident p lane
wave at an oblique angle . •
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electric field on the wire and that of the incident field. The tangential
• ,~component of the incident electric field is f~ex~(+Jkcos e~z) which

remains valid even in the case when cos 2 
0 > 1. Thus no modification

is necessary here, although allowances in the actual computer programeing

must be made to adco odate the rapidly oscillating nature of

exp(+jkcos Baa) when cos is large.

Next, we have to extend the formula of i~
2) in Eq. 3—6. In the case

of an inhomogeneous plane wave , sin is pure imaginary, and may be

calculated from

sin 9~% • ±j~~/~~
2 8~ — l~ ; cos2 8~~> 1 . (3—14)

The question is then: “Which sign in Eq. 3—14 should be used in the

calculation?” Consider an inhomogeneous plane wave propagating in the

:~ 
a — z plane:

• —jk(x sin 8 +z cos e~) 2E — e : cos 9 > 1 (3—15)y 1%

Zn order to satisfy the radiation condition, the field mus t decay (instead

of grow) exponentially as x 4~~. This imposes a condition on sin 8~ , viz.,

I (sin 0 )  < 0. (3—16)

• Thus, the lower sign (minus sign) in Eq. (3—14) must be used in the

calculation of I~ from Eqs . 3—7 , 3—8, 3—10, and 3— 13 . Furthermore ,

W in Eq. 3—8 becomes

W — 21ø(ka~
/os2 9~

_ l)K0(kaJcos
2 e~ 

— 1) . (3— 17)

• whe- and are, respectively , the zeroth order modified Bessel functions.

20
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IV. N1.ThIERICAL COMPUTATIONS

As it stands , the numerical computation of each element of the system

of linear equations in Eq. 2—25 is extremely time—consuming. The

summation of the ratio of Bessel functions often presents another problem

because both the numerator and the denominator could exceed the rang. of

the computer and yet the quotient is still not smal l enough to warrant

the termi nation of the s~.~~ation process. In this section , a technique

to circumvent the above difficulty is presented . And , at the same time,

it significantly improves the rate of convergence . To best illustrate

this technique , the evaluation of is discussed in detail.

Besides a multiplying constant , is rewritten below with the

order of summation and integration interchanged :

(1) r° sin2 ad 
g~~cos n~~ H~

2
~’(ya) 

—
V — I 2 2 2 (2) • dci .

‘0 ci .y m”O c( - m ) H (ya)

Because of the branch point a — k, we partition the above integral into

two parts:

(1) 1
k 5~~2 ad g~~cos “~o ~~

2
~’(ya)

— J 0 2~ m~0 £(r~ — in
2

) H~
2
~(ya) 

dci

f
C 

sin2 ad cvcos 1
~~~ _ 

K ’( ra )  
2)— 

~ k ct2t m~0 c~
(T•
~ 

— in
2
) 
K~(ra) 

dci , ( —

where {K
~
} are the ~~ order modified Bessel functions and r — —

Note that both integrands above have a non—integrable singularity in

the neighborhood of the branch point. Hence, both integrals must be

further partitioned such that the integration of a small region around

21
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I
• the branch point is deliberately isolated. Each of the partial integrals

would be treated individually in the subsequent paragraphs.

The first integral to be treated is

— j~
’6 si:2 ad 

~ (vi) dci , (4—3)

• ) where 6 is an arbitrarily small number and ~~ represents the st ation of

Hanksl functions. By invoking the recurrence relationship between the

Hankel function and its derivative , 7,,~ becomes

rR~
2
~ (U) ~1

• ~~(u) • —G0,~ 
H~
2
~(u) 

+ J1 G~~ —

where u — ~a and

I
C — 

~~~

‘ 

2 ; m • 0,1,2,... . (4—5 )mu 
~~~ — m )

Since the real and imaginary :arts of have different rates of convergence,

they are treated independently as follows: First , by explicitly writing

as .I~ + 1~~’ 
the real part of reads

I
.1 (u)3 (u) + Y (u)Y (u)

— —G0~ 2 2 U
J0(u) + Y0(u)

+ ~~ rJm(u)3
~l(u) + Y (u)Y l( u) 1  

. (4—6)m l  L ~~~~ 
+ Y (U) J

Note that for a given u, the large—order approximations of each term of

the sum can be extracted , which are

lim I ~ rn—i in m—l 
— 

in 
— — 

In (4 7)
~~~~ ~2 +~~2 u

m in
• 

• 22
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• .

and
• sin 2 m 0• un • — cos V$

0 ~ 
(4—8)

in

• By adding and subtracting the large—order approximations from each term

of the sum , Eq. 4—6 becomes

3 3  + Y Y  r33 + Y ~~Re{
~~

} - - G~~ ~~ 
+ ~~ 

1 
+ 

~1 (cmv [ 
in ~~l in ~~l -

cos v$0 sin 2iniD) cos ~ sin 2l
~ o

— 

u 2 ?~ u 2 (4 9)
i n )  m l in

The second sum can be evaluated analytically and the result is

~ sin 2Up*0 t
2 — — J Ln(2 sin ~) dt . (4—10)

m l  in o

The integral above is a thoroughly studied special function , known as

• Clausen’s integral (14~, whose value can be easily determined . The

remaining sum in Eq. 4—9 has to be evaluated numerically. However, as

• compared with the sum in Eq. 4—6, which converges at a rate of m 2, the

• modified sum converges at a much faster rate of m 4. Furthermore , in

evaluating the 1~th order Bessel function B (B • 3 or I ), we can

apply the following recurrence formula:

B~~1(u) • B (u) — B 1(u) . (4—11)

• Hov~ver , as is well—known, we should use this recurrence formula with

extreme caution in computing 3 to avoid the so—called “propagation of

error” when 2m/u > 1. In the actual computation , the total sum is broken

• down into partial sums of 10, e.g., from n to n + 9. We first evaluate

and then, we apply the recurrence formula in both the forward

and backward directions to obtain the rest of 3 . Moreover , we terminateIn
23 
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the summation by comparing the magnitude of the partial sun with the total

sum. In doing so , we avoid the danger of terminating the summation pre-

maturely in the case 2n~0 is a multiple of iv refer ring to Eq. 4—8) .

As a final remark, when kaw >> ~ can be approximated by

• I~
(u) • ~~ ~0(u) ; u > 100 . (4—12)

On the other hand , no modification is necessary to sum Im{Z0
} because

its large—order approximation is zero.

The second integral of concern is

I — 
sin2 ad 

~ (T a) dci , (4—13)
2 lc~I•d ~~~T 

K

where represents the summation of the modified Bessel functions {K~
}.

With the derivative of K written in terms of K and K , ~ reads
in in m-l K

— — — ~ 
C 
[K

m_i 
+ m] 

(4—14)

in which v — Ta. Sines the large-order approximation of each term of the

sum is

rK (v)

~: [cv) 
~~~~~~~] 

“

~~~~ 

(4-15)

we evaluate 
~K 

as

K1(v) cos ~ sin 2i~
+K O v K 0(v) v 

~~~~

• 
— 

~~ ~~~ 
+ + 

c0
8: o ________ 

. (4—16)

The above formula is similar to Eq. 4—9; therefore, it is evaluated by

similar techniques . Furthermore , we ext ract the large argument approximation

24
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of 
~K’ 

which is

• 
. 

~~~~ ~ ~K
(15

~ 
; v > 150 (4—17)

Substituting the results of Eqs. 4—16 and 4— 17 into Eq. 4—13 , we arrive at

12 — 
j

ff/d 

(12T ~K
(Ta) dci

+ 
ç

(n+flir /d sin2 ad [+ !K ta — 

~ IK~~50j dci
n’.I mi/d

+ ZK (lSO) 
~~ 

sin dci . (4-18)

ii /d

By two successive integrations by parts, the last integral above is

transformed into

sin2 ad dci • d2 ~~~~ ~ dt • — d2Ci(21r) , (4—19)
irfd • 2iv

where is the cosine integral (15].

The third integral of concern is

• k 2 +6 2
r r f ~~~~~~ ~~~~~~~~~~~~~ 

dci — I (~a) dci . (4—20)

First , we examine the small—argument behaviors of both and ~~; they are

h a  ae{
~~

} — -

040 in-l

1TG
u r n  1m(

~H } — 2 ‘
2u~~n u

and

~~ ~K ~ ~ 
mG~~ . (4—21)
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It can be easily shown that the real part of 13 tends to zero, and its i :~

imaginary part can be approx imated by

hG sin2 kd0V 
. (4—22)m 2ak 3 Ln (a/~~~)

Since the fort of and ar e similar , analogous techni ques

are employed to evaluate &~~ ; the result is (besides a ~~1ttp1yin$ constant)

N sin2 a d  sin2 a d

Jo c
~

ci
~y: ~~~~~~ 

- 

n—N+i 2 ~i
(r na) — 

~~~~~ ~i
(i5O

~

~ sin2 ci d
• 

— (~)3 ~1U5O) 1 , (4—23)
n tj$1 it

where N • Integer 0th/it) and

J (u) cos ~ sin 20o
13(u) — — Go J

’(u) — 

u

~ r rJ~iu) 
~~ 

cos sin_2n*0\+ Ji
~ ”~’~L ~~~~ 

- 

uJ rn2 J ‘(4-24)

and
11(u) cos sin 21$o

— ~~~~~~~~~ I0(u) 
— 

~ Jl in
2

+ I~ r~m_1~ - 
cos sin_2n4~~~

miuii
\ , 

inv i I~(U) u
~ 

u ~2 (
—1 ,~(4_25)

The last sum in Eq. 4—23 can be determined as follows :

sin2 ci d t2Trd/h N sin2 a dn 
— 
~ j f(~)dO — , (4—26

n N +l n 0 n.l it

where f is th. Clausen ’s integral stated in Eq. 4—10.
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V. NU)~ RtCAL RESULTS

In determining the field inside the cavity with the wire absent ,

the series representation of the aperture field in Eq. 2—3 is truncated

at it — N ( the series contains N + 1. terms). We must first establish the

convergence of the aperture field with respect to N. The aperture fields

as calculatedwith N — 0, 1, and 2 are shown in Figure 4. We notice that

the aperture fields as computed by N — 1. and that by N — 2 agree reasonably

at the main lobe but not so well at the side lobe. For many practical

cases, the three—term expansion N — 2 is generally sufficiently accurate

for computing the aperture field.

An indication of the accuracy of the field E inside the cavity is

how well, does E satisfy the boundary condition on the cavity wall (including

A the aperture). En Figure 5, E
~ 
as computed from Eq. 2—26 is plotted as a

function of •. In the aperture defined by ~~ < 57.29 °, the calculated

E
~ 
agrees extremely well with the two—term expansion of the aperature field

calculated from Eq. 2—3. It drops to less than 0.01% of the aperture

field on the wall where E
~ 
should be ideally zero. Also shown in Figure 5

is E at points just behind the aperture, p/a • 0.995. The variations

of E with respect to z at 0/a • 0.0, 0.5, and 0.8 are sketched in Figure 6.

As a function of decreasing (p/a), B5 decreases rapidly from its value

in the aperture, while it increases at an even faster rate from zero on

the cavity wall toward the center of the cavity. These features are

illustrated in Figure 7 where E5 is plotted as a function of p at z • 0.0

and ,./tt — 0.3.

Part B of the problem is to compute the current induced on the wire

inside the cavity. As mentioned in previous sections, the simple ~~rwala

27
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developed by Qiang, Lee and Lispin (81 must be extended to compute the

current on a finite wire due to an inciden t inhomogeneous plane wave .

Since the method of moments does not require any modification for

handling the case of an inhomogeneous incident wave , it provides us a

• verification of the extended simple formula. The comparison of the

induced currents on a wire in free space due to a plane wave of unit

strength as comput.d by both methods is illustrated in Figure 8, and we

notice thac the results are in reasonable agreement. Now, we may apply

this extended formula to compute the induced current on a wire inside

the cavity. In Figure 9, th~ current as calculated by the simple formula

is compared with that obtained by the method of momenta. Again, the

agreement between the two results is acceptable. It should be noted

that the current inside the cavity is normalized with respect to the

center current on a wire of the same length in free space. Since the

convergence of the moment method must be established on a case—by—cas e

basis, the simp le formula is used hereafter to compute the induced current

even in the case where the wire is as short as 0.4 wavelength.

Although we have already established that the three—term expansion

is usually adequate to represent the aperture electric field, it is still

appropriate here to examine the convergence of the current induced on a

wire inside the cavity with various numbers of expansions. In Figure 10 .

the induced currents as calculated with N — 0, 1, and 2 are sketched.

We see that , as far as the induced current is concerned , the two—term

• expansion (N • 1) is sufficient .

Inside a given cavity , it is expected that the induced current on

a given wire with its position fixed would increase with the enlargement

32
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of the length of the slot 2c. The induced current at the center of the

wire does thcrsa•e with c when c is relatively small am compare d with

• the radius of the cavity a. The center current acquires its peak value

• when c/a is about 0.9 and begins to decrease thereafter. These charac-

teristics are demonstrated in Figure 11.

In Figure 12 , we show the center current on the wire as a function

of a , 0.25 ~~ . a/A .~~ . 0.8, with the othe r dimensions fixed . We observe that

there are three peaks. The first of these peaks corresponds to the

resonance at which J0(y0a) — 0. The second and third peaks correspond

respectively to J1(y0a) — 0 and S0(y1a) — 0. It should be noted that the

resonances would occur more often beyond the range of Figure 12, and

numerical solutions for large a would not be reliable.

The center current on a wire as a function of the length of the

cavity 2h with other dimensions fixed is plotted in Figure 13. Two

• 
peaks are observed in Figure 13. The first peak is related to the

resonance corresponding to J0(y1a) • 0, but we are unable to analyze

the nature of the smaller peak at h • 1.021.

Finally, we examine the variation of the induced current with respect

to the frequency of the incident plane wave. The induced currents at

representative frequencies are sketched in Figure 14, which clearly reflects

the alteration of the electrical length of the wire.
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Figure 11. Induc ed current at the center of the wire inside the cavity
as a function of slot length 2c. The input data are :
a — 1., d • 0.015, h • 2.2 ,  freq . — 0.3.
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cavity as a function of cylinder radius a. The input
data are: c 0.31 , 4 — 0.0131, h • 0.61, h • 0.21,
0/a • 0.1. w
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